btrfs-progs/check/repair.c
David Sterba 7f396f5ced btrfs-progs: reorder key initializations
Use the objectid, type, offset natural order as it's more readable and
we're used to read keys like that.

Signed-off-by: David Sterba <dsterba@suse.com>
2024-04-30 21:49:15 +02:00

384 lines
9.5 KiB
C

/*
* Copyright (C) 2012 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kernel-lib/list.h"
#include "kernel-lib/rbtree.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/extent-io-tree.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/tree-checker.h"
#include "common/extent-cache.h"
#include "check/repair.h"
int opt_check_repair = 0;
/*
* Adjust the pointers going up the tree, starting at level making sure the
* right key of each node is points to 'key'. This is used after shifting
* pointers to the left, so it stops fixing up pointers when a given leaf/node
* is not in slot 0 of the higher levels.
*/
void btrfs_fixup_low_keys(struct btrfs_path *path, struct btrfs_disk_key *key,
int level)
{
for (int i = level; i < BTRFS_MAX_LEVEL; i++) {
int slot = path->slots[i];
if (!path->nodes[i])
break;
btrfs_set_node_key(path->nodes[i], key, slot);
btrfs_mark_buffer_dirty(path->nodes[i]);
if (slot != 0)
break;
}
}
/*
* Update an item key without the safety checks. This is meant to be called by
* fsck only.
*/
void btrfs_set_item_key_unsafe(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *new_key)
{
struct btrfs_disk_key disk_key;
struct extent_buffer *eb;
int slot;
eb = path->nodes[0];
slot = path->slots[0];
btrfs_cpu_key_to_disk(&disk_key, new_key);
btrfs_set_item_key(eb, &disk_key, slot);
btrfs_mark_buffer_dirty(eb);
if (slot == 0)
btrfs_fixup_low_keys(path, &disk_key, 1);
}
int btrfs_add_corrupt_extent_record(struct btrfs_fs_info *info,
struct btrfs_key *first_key,
u64 start, u64 len, int level)
{
int ret = 0;
struct btrfs_corrupt_block *corrupt;
if (!info->corrupt_blocks)
return 0;
corrupt = malloc(sizeof(*corrupt));
if (!corrupt)
return -ENOMEM;
memcpy(&corrupt->key, first_key, sizeof(*first_key));
corrupt->cache.start = start;
corrupt->cache.size = len;
corrupt->level = level;
ret = insert_cache_extent(info->corrupt_blocks, &corrupt->cache);
if (ret)
free(corrupt);
BUG_ON(ret && ret != -EEXIST);
return ret;
}
static int traverse_tree_blocks(struct extent_io_tree *tree,
struct extent_buffer *eb, int tree_root)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct extent_buffer *tmp;
struct btrfs_root_item *ri;
struct btrfs_key key;
u64 bytenr;
int level = btrfs_header_level(eb);
int nritems;
int ret;
int i;
u64 end = eb->start + eb->len;
bool pin = tree == &fs_info->pinned_extents;
/*
* If we have pinned/excluded this block before, don't do it again.
* This can not only avoid forever loop with broken filesystem
* but also give us some speedups.
*/
if (test_range_bit(tree, eb->start, end - 1, EXTENT_DIRTY, 0, NULL))
return 0;
if (pin)
btrfs_pin_extent(fs_info, eb->start, eb->len);
else
set_extent_dirty(tree, eb->start, end - 1, GFP_NOFS);
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
struct btrfs_tree_parent_check check = { 0 };
if (level == 0) {
bool is_extent_root;
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_ROOT_ITEM_KEY)
continue;
is_extent_root =
key.objectid == BTRFS_EXTENT_TREE_OBJECTID;
/* If pin, skip the extent root */
if (pin && is_extent_root)
continue;
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
bytenr = btrfs_disk_root_bytenr(eb, ri);
check.owner_root = key.objectid;
check.level = btrfs_disk_root_level(eb, ri);
/*
* If at any point we start needing the real root we
* will have to build a stump root for the root we are
* in, but for now this doesn't actually use the root so
* just pass in extent_root.
*/
tmp = read_tree_block(fs_info, bytenr, &check);
if (!extent_buffer_uptodate(tmp)) {
fprintf(stderr, "Error reading root block\n");
return -EIO;
}
ret = traverse_tree_blocks(tree, tmp, 0);
free_extent_buffer(tmp);
if (ret)
return ret;
} else {
u64 child_end;
bytenr = btrfs_node_blockptr(eb, i);
child_end = bytenr + fs_info->nodesize - 1;
/* If we aren't the tree root don't read the block */
if (level == 1 && !tree_root) {
if (pin)
btrfs_pin_extent(fs_info, bytenr,
fs_info->nodesize);
else
set_extent_dirty(tree, bytenr,
child_end, GFP_NOFS);
continue;
}
check.owner_root = btrfs_header_owner(eb);
check.level = level - 1;
tmp = read_tree_block(fs_info, bytenr, &check);
if (!extent_buffer_uptodate(tmp)) {
fprintf(stderr, "Error reading tree block\n");
return -EIO;
}
ret = traverse_tree_blocks(tree, tmp, tree_root);
free_extent_buffer(tmp);
if (ret)
return ret;
}
}
return 0;
}
int btrfs_mark_used_tree_blocks(struct btrfs_fs_info *fs_info,
struct extent_io_tree *tree)
{
int ret;
ret = traverse_tree_blocks(tree, fs_info->chunk_root->node, 0);
if (!ret)
ret = traverse_tree_blocks(tree, fs_info->tree_root->node, 1);
if (!ret && fs_info->block_group_root)
ret = traverse_tree_blocks(tree,
fs_info->block_group_root->node, 0);
return ret;
}
static int populate_used_from_extent_root(struct btrfs_root *root,
struct extent_io_tree *io_tree)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *leaf;
struct btrfs_path path = { 0 };
struct btrfs_key key;
int slot;
int ret;
key.objectid = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
while(1) {
u64 start, end;
leaf = path.nodes[0];
slot = path.slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
leaf = path.nodes[0];
slot = path.slots[0];
}
btrfs_item_key_to_cpu(leaf, &key, slot);
start = end = key.objectid;
if (key.type == BTRFS_EXTENT_ITEM_KEY)
end = start + key.offset - 1;
else if (key.type == BTRFS_METADATA_ITEM_KEY)
end = start + fs_info->nodesize - 1;
if (start != end) {
if (!IS_ALIGNED(start, fs_info->sectorsize) ||
!IS_ALIGNED(end + 1, fs_info->sectorsize)) {
fprintf(stderr, "unaligned value in the extent tree start %llu end %llu\n",
start, end + 1);
ret = -EINVAL;
break;
}
set_extent_dirty(io_tree, start, end, GFP_NOFS);
}
path.slots[0]++;
}
btrfs_release_path(&path);
return ret;
}
int btrfs_mark_used_blocks(struct btrfs_fs_info *fs_info,
struct extent_io_tree *tree)
{
struct btrfs_root *root;
struct rb_node *n;
int ret;
root = btrfs_extent_root(fs_info, 0);
while (1) {
ret = populate_used_from_extent_root(root, tree);
if (ret)
break;
n = rb_next(&root->rb_node);
if (!n)
break;
root = rb_entry(n, struct btrfs_root, rb_node);
if (root->root_key.objectid != BTRFS_EXTENT_TREE_OBJECTID)
break;
}
return ret;
}
/*
* Fixup block accounting. The initial block accounting created by
* make_block_groups isn't accuracy in this case.
*/
int btrfs_fix_block_accounting(struct btrfs_trans_handle *trans)
{
struct extent_io_tree used;
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *cache;
u64 start, end;
u64 bytes_used = 0;
int ret = 0;
ret = btrfs_run_delayed_refs(trans, -1);
if (ret)
return ret;
extent_io_tree_init(fs_info, &used, 0);
ret = btrfs_mark_used_blocks(fs_info, &used);
if (ret)
goto out;
start = 0;
while(1) {
cache = btrfs_lookup_first_block_group(fs_info, start);
if (!cache)
break;
start = cache->start + cache->length;
cache->used = 0;
cache->space_info->bytes_used = 0;
if (list_empty(&cache->dirty_list))
list_add_tail(&cache->dirty_list, &trans->dirty_bgs);
}
start = 0;
while (1) {
ret = find_first_extent_bit(&used, 0, &start, &end,
EXTENT_DIRTY, NULL);
if (ret)
break;
bytes_used += end - start + 1;
ret = btrfs_update_block_group(trans, start, end - start + 1,
1, 0);
if (ret)
goto out;
clear_extent_dirty(&used, start, end, NULL);
}
btrfs_set_super_bytes_used(fs_info->super_copy, bytes_used);
ret = 0;
out:
extent_io_tree_release(&used);
return ret;
}
enum btrfs_tree_block_status btrfs_check_block_for_repair(struct extent_buffer *eb,
struct btrfs_key *first_key)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
enum btrfs_tree_block_status status;
if (btrfs_is_leaf(eb))
status = __btrfs_check_leaf(eb);
else
status = __btrfs_check_node(eb);
if (status == BTRFS_TREE_BLOCK_CLEAN)
return status;
if (btrfs_header_owner(eb) == BTRFS_EXTENT_TREE_OBJECTID) {
struct btrfs_key key;
if (first_key)
memcpy(&key, first_key, sizeof(struct btrfs_key));
else
btrfs_node_key_to_cpu(eb, &key, 0);
btrfs_add_corrupt_extent_record(fs_info, &key,
eb->start, eb->len,
btrfs_header_level(eb));
}
return status;
}