btrfs-progs/include/kerncompat.h

917 lines
20 KiB
C
Raw Normal View History

2007-06-12 15:07:11 +02:00
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __KERNCOMPAT_H__
#define __KERNCOMPAT_H__
#ifndef __SANE_USERSPACE_TYPES__
/* For PPC64 to get LL64 types */
#define __SANE_USERSPACE_TYPES__
#endif
2007-06-08 04:12:21 +02:00
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
2007-06-08 04:12:21 +02:00
#include <string.h>
#include <endian.h>
#include <byteswap.h>
#include <assert.h>
#include <stddef.h>
#include <linux/types.h>
#include <linux/const.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdarg.h>
#include <features.h>
/*
* Glibc supports backtrace, some other libc implementations don't but need to
* be more careful detecting proper glibc.
*/
#if !defined(__GLIBC__) || defined(__UCLIBC__)
#ifndef BTRFS_DISABLE_BACKTRACE
#define BTRFS_DISABLE_BACKTRACE
#endif
#ifndef __always_inline
#define __always_inline __inline __attribute__ ((__always_inline__))
#endif
#endif
#ifndef BTRFS_DISABLE_BACKTRACE
#include <execinfo.h>
#endif
#define ptr_to_u64(x) ((u64)(uintptr_t)x)
#define u64_to_ptr(x) ((void *)(uintptr_t)x)
2007-06-08 04:12:21 +02:00
#ifndef READ
#define READ 0
#define WRITE 1
#define READA 2
#endif
#define gfp_t int
#define get_cpu_var(p) (p)
#define __get_cpu_var(p) (p)
#define BITS_PER_BYTE 8
#define BITS_PER_LONG (__SIZEOF_LONG__ * BITS_PER_BYTE)
#define __GFP_BITS_SHIFT 20
#define __GFP_BITS_MASK ((int)((1U << __GFP_BITS_SHIFT) - 1))
#define __GFP_DMA32 0
#define __GFP_HIGHMEM 0
2007-02-02 15:18:22 +01:00
#define GFP_KERNEL 0
2007-04-02 20:18:17 +02:00
#define GFP_NOFS 0
#define GFP_NOWAIT 0
#define GFP_ATOMIC 0
#define __read_mostly
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define _RET_IP_ 0
#define TASK_UNINTERRUPTIBLE 0
#define SLAB_MEM_SPREAD 0
#define ALLOW_ERROR_INJECTION(a, b)
#ifndef ULONG_MAX
#define ULONG_MAX (~0UL)
#endif
#ifndef SECTOR_SHIFT
#define SECTOR_SHIFT (9)
#endif
#define __token_glue(a,b,c) ___token_glue(a,b,c)
#define ___token_glue(a,b,c) a ## b ## c
#ifdef DEBUG_BUILD_CHECKS
#define BUILD_ASSERT(x) extern int __token_glue(compile_time_assert_,__LINE__,__COUNTER__)[1-2*!(x)] __attribute__((unused))
#else
#define BUILD_ASSERT(x)
#endif
static inline void print_trace(void)
{
#ifndef BTRFS_DISABLE_BACKTRACE
#define MAX_BACKTRACE 16
void *array[MAX_BACKTRACE];
int size;
size = backtrace(array, MAX_BACKTRACE);
backtrace_symbols_fd(array, size, 2);
#endif
}
static inline void warning_trace(const char *assertion, const char *filename,
const char *func, unsigned line, long val)
{
if (!val)
return;
fprintf(stderr,
"%s:%u: %s: Warning: assertion `%s` failed, value %ld\n",
filename, line, func, assertion, val);
print_trace();
}
static inline void bugon_trace(const char *assertion, const char *filename,
const char *func, unsigned line, long val)
{
if (!val)
return;
fprintf(stderr,
"%s:%u: %s: BUG_ON `%s` triggered, value %ld\n",
filename, line, func, assertion, val);
print_trace();
abort();
exit(1);
}
#ifdef __CHECKER__
#define __force __attribute__((force))
#define __bitwise__ __attribute__((bitwise))
#else
#define __force
#ifndef __bitwise__
#define __bitwise__
#endif
#endif
2007-06-08 04:12:21 +02:00
#ifndef __CHECKER__
/*
* Since we're using primitive definitions from kernel-space, we need to
* define __KERNEL__ so that system header files know which definitions
* to use.
*/
#define __KERNEL__
2007-06-08 04:12:21 +02:00
#include <asm/types.h>
typedef __u32 u32;
typedef __u64 u64;
typedef __u16 u16;
typedef __u8 u8;
typedef __s64 s64;
typedef __s32 s32;
/*
* Continuing to define __KERNEL__ breaks others parts of the code, so
* we can just undefine it now that we have the correct headers...
*/
#undef __KERNEL__
2007-06-08 04:12:21 +02:00
#else
typedef unsigned int u32;
2007-06-08 04:12:21 +02:00
typedef unsigned int __u32;
2007-02-26 16:55:01 +01:00
typedef unsigned long long u64;
typedef unsigned char u8;
typedef unsigned short u16;
typedef long long s64;
typedef int s32;
2007-06-08 04:12:21 +02:00
#endif
typedef u64 sector_t;
struct vma_shared { int prio_tree_node; };
struct vm_area_struct {
unsigned long vm_pgoff;
unsigned long vm_start;
unsigned long vm_end;
struct vma_shared shared;
};
struct page {
unsigned long index;
};
struct mutex {
unsigned long lock;
};
typedef struct spinlock_struct {
unsigned long lock;
} spinlock_t;
struct rw_semaphore {
long lock;
};
#define mutex_init(m) \
do { \
(m)->lock = 1; \
} while (0)
static inline void mutex_lock(struct mutex *m)
{
m->lock--;
}
static inline void mutex_unlock(struct mutex *m)
{
m->lock++;
}
static inline int mutex_is_locked(struct mutex *m)
{
return (m->lock != 1);
}
static inline void spin_lock_init(spinlock_t *lock)
{
lock->lock = 0;
}
static inline void spin_lock(spinlock_t *lock)
{
lock->lock++;
}
static inline void spin_unlock(spinlock_t *lock)
{
lock->lock--;
}
#define spin_lock_irqsave(_l, _f) do { _f = 0; spin_lock((_l)); } while (0)
static inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
{
spin_unlock(lock);
}
static inline void init_rwsem(struct rw_semaphore *sem)
{
sem->lock = 0;
}
static inline bool down_read_trylock(struct rw_semaphore *sem)
{
sem->lock++;
return true;
}
static inline void down_read(struct rw_semaphore *sem)
{
sem->lock++;
}
static inline void up_read(struct rw_semaphore *sem)
{
sem->lock--;
}
#define cond_resched() do { } while (0)
2007-06-12 17:39:09 +02:00
#define preempt_enable() do { } while (0)
#define preempt_disable() do { } while (0)
#define might_sleep() do { } while (0)
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
#ifndef __attribute_const__
#define __attribute_const__ __attribute__((__const__))
#endif
/* To silence compilers (like clang) that don't understand fallthrough comments. */
#if defined __has_attribute
# if __has_attribute(__fallthrough__)
# define fallthrough __attribute__((__fallthrough__))
# endif
#else
# define fallthrough do {} while (0) /* fallthrough */
#endif
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
/*
* error pointer
*/
#define MAX_ERRNO 4095
#define IS_ERR_VALUE(x) ((x) >= (unsigned long)-MAX_ERRNO)
static inline void *ERR_PTR(long error)
{
return (void *) error;
}
static inline long PTR_ERR(const void *ptr)
{
return (long) ptr;
}
static inline int IS_ERR(const void *ptr)
{
return IS_ERR_VALUE((unsigned long)ptr);
}
static inline int IS_ERR_OR_NULL(const void *ptr)
{
return !ptr || IS_ERR(ptr);
}
#define div_u64(x, y) ((x) / (y))
/**
* __swap - swap values of @a and @b
* @a: first value
* @b: second value
*/
#define __swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/*
* This looks more complex than it should be. But we need to
* get the type for the ~ right in round_down (it needs to be
* as wide as the result!), and we want to evaluate the macro
* arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
#define round_down(x, y) ((x) & ~__round_mask(x, y))
/*
* printk
*/
#define printk(fmt, args...) fprintf(stderr, fmt, ##args)
#define KERN_CRIT ""
#define KERN_ERR ""
#define KERN_EMERG ""
#define KERN_ALERT ""
#define KERN_CRIT ""
#define KERN_NOTICE ""
#define KERN_INFO ""
#define KERN_WARNING ""
/*
* kmalloc/kfree
*/
#define kmalloc(x, y) malloc(x)
#define kzalloc(x, y) calloc(1, x)
#define kstrdup(x, y) strdup(x)
#define kfree(x) free(x)
#define vmalloc(x) malloc(x)
#define vfree(x) free(x)
#define kvzalloc(x, y) kzalloc(x,y)
#define kvfree(x) free(x)
#define memalloc_nofs_save() (0)
#define memalloc_nofs_restore(x) ((void)(x))
#define __releases(x)
#define __acquires(x)
struct kmem_cache {
size_t size;
};
static inline struct kmem_cache *kmem_cache_create(const char *name,
size_t size, unsigned long idk,
unsigned long flags, void *private)
{
struct kmem_cache *ret = malloc(sizeof(*ret));
if (!ret)
return ret;
ret->size = size;
return ret;
}
static inline void kmem_cache_destroy(struct kmem_cache *cache)
{
free(cache);
}
static inline void *kmem_cache_alloc(struct kmem_cache *cache, gfp_t mask)
{
return malloc(cache->size);
}
static inline void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t mask)
{
return calloc(1, cache->size);
}
static inline void kmem_cache_free(struct kmem_cache *cache, void *ptr)
{
free(ptr);
}
#define BUG_ON(c) bugon_trace(#c, __FILE__, __func__, __LINE__, (long)(c))
#define BUG() \
do { \
BUG_ON(1); \
__builtin_unreachable(); \
} while (0)
#define WARN_ON(c) ({ \
int __ret_warn_on = !!(c); \
warning_trace(#c, __FILE__, __func__, __LINE__, \
(long)(__ret_warn_on)); \
__ret_warn_on; \
})
#define WARN(c, msg...) ({ \
int __ret_warn_on = !!(c); \
if (__ret_warn_on) \
printf(msg); \
__ret_warn_on; \
})
#define IS_ENABLED(c) 0
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
2007-06-12 17:39:09 +02:00
(type *)( (char *)__mptr - offsetof(type,member) );})
#ifndef __bitwise
2007-06-08 04:12:21 +02:00
#ifdef __CHECKER__
#define __bitwise __bitwise__
#else
#define __bitwise
#endif /* __CHECKER__ */
#endif /* __bitwise */
/* Alignment check */
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
/*
* Alignment, copied and renamed from /usr/include/linux/const.h to work around
* issues caused by moving the definition in 5.12
*/
#define __ALIGN_KERNEL__(x, a) __ALIGN_KERNEL_MASK__(x, (typeof(x))(a) - 1)
#define __ALIGN_KERNEL_MASK__(x, mask) (((x) + (mask)) & ~(mask))
#define ALIGN(x, a) __ALIGN_KERNEL__((x), (a))
static inline int is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/**
* const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value
* @n: parameter
*
* Use this where sparse expects a true constant expression, e.g. for array
* indices.
*/
#define const_ilog2(n) \
( \
__builtin_constant_p(n) ? ( \
(n) < 2 ? 0 : \
(n) & (1ULL << 63) ? 63 : \
(n) & (1ULL << 62) ? 62 : \
(n) & (1ULL << 61) ? 61 : \
(n) & (1ULL << 60) ? 60 : \
(n) & (1ULL << 59) ? 59 : \
(n) & (1ULL << 58) ? 58 : \
(n) & (1ULL << 57) ? 57 : \
(n) & (1ULL << 56) ? 56 : \
(n) & (1ULL << 55) ? 55 : \
(n) & (1ULL << 54) ? 54 : \
(n) & (1ULL << 53) ? 53 : \
(n) & (1ULL << 52) ? 52 : \
(n) & (1ULL << 51) ? 51 : \
(n) & (1ULL << 50) ? 50 : \
(n) & (1ULL << 49) ? 49 : \
(n) & (1ULL << 48) ? 48 : \
(n) & (1ULL << 47) ? 47 : \
(n) & (1ULL << 46) ? 46 : \
(n) & (1ULL << 45) ? 45 : \
(n) & (1ULL << 44) ? 44 : \
(n) & (1ULL << 43) ? 43 : \
(n) & (1ULL << 42) ? 42 : \
(n) & (1ULL << 41) ? 41 : \
(n) & (1ULL << 40) ? 40 : \
(n) & (1ULL << 39) ? 39 : \
(n) & (1ULL << 38) ? 38 : \
(n) & (1ULL << 37) ? 37 : \
(n) & (1ULL << 36) ? 36 : \
(n) & (1ULL << 35) ? 35 : \
(n) & (1ULL << 34) ? 34 : \
(n) & (1ULL << 33) ? 33 : \
(n) & (1ULL << 32) ? 32 : \
(n) & (1ULL << 31) ? 31 : \
(n) & (1ULL << 30) ? 30 : \
(n) & (1ULL << 29) ? 29 : \
(n) & (1ULL << 28) ? 28 : \
(n) & (1ULL << 27) ? 27 : \
(n) & (1ULL << 26) ? 26 : \
(n) & (1ULL << 25) ? 25 : \
(n) & (1ULL << 24) ? 24 : \
(n) & (1ULL << 23) ? 23 : \
(n) & (1ULL << 22) ? 22 : \
(n) & (1ULL << 21) ? 21 : \
(n) & (1ULL << 20) ? 20 : \
(n) & (1ULL << 19) ? 19 : \
(n) & (1ULL << 18) ? 18 : \
(n) & (1ULL << 17) ? 17 : \
(n) & (1ULL << 16) ? 16 : \
(n) & (1ULL << 15) ? 15 : \
(n) & (1ULL << 14) ? 14 : \
(n) & (1ULL << 13) ? 13 : \
(n) & (1ULL << 12) ? 12 : \
(n) & (1ULL << 11) ? 11 : \
(n) & (1ULL << 10) ? 10 : \
(n) & (1ULL << 9) ? 9 : \
(n) & (1ULL << 8) ? 8 : \
(n) & (1ULL << 7) ? 7 : \
(n) & (1ULL << 6) ? 6 : \
(n) & (1ULL << 5) ? 5 : \
(n) & (1ULL << 4) ? 4 : \
(n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : \
1) : \
-1)
btrfs-progs: zoned: implement log-structured superblock Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - primary superblock: offset 0B (and the following zone) - first copy: offset 512G (and the following zone) - Second copy: offset 4T (4096G, and the following zone) If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Currently, superblock reading/writing is done by pread/pwrite. This commit replace the call sites with sbread/sbwrite to wrap the functions. For zoned btrfs, btrfs_sb_io which is called from sbread/sbwrite reverses the IO position back to a mirror number, maps the mirror number into the superblock logging position, and do the IO. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-26 08:27:26 +02:00
static inline int ilog2(u64 num)
{
int l = 0;
num >>= 1;
while (num) {
l++;
num >>= 1;
}
return l;
}
typedef u16 __bitwise __le16;
typedef u16 __bitwise __be16;
typedef u32 __bitwise __le32;
typedef u32 __bitwise __be32;
typedef u64 __bitwise __le64;
typedef u64 __bitwise __be64;
btrfs-progs: zoned: implement log-structured superblock Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - primary superblock: offset 0B (and the following zone) - first copy: offset 512G (and the following zone) - Second copy: offset 4T (4096G, and the following zone) If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Currently, superblock reading/writing is done by pread/pwrite. This commit replace the call sites with sbread/sbwrite to wrap the functions. For zoned btrfs, btrfs_sb_io which is called from sbread/sbwrite reverses the IO position back to a mirror number, maps the mirror number into the superblock logging position, and do the IO. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-26 08:27:26 +02:00
#define U64_MAX UINT64_MAX
#define U32_MAX UINT32_MAX
/* Macros to generate set/get funcs for the struct fields
* assume there is a lefoo_to_cpu for every type, so lets make a simple
* one for u8:
*/
#define le8_to_cpu(v) (v)
#define cpu_to_le8(v) (v)
#define __le8 u8
2007-06-08 04:12:21 +02:00
#if __BYTE_ORDER == __BIG_ENDIAN
#define cpu_to_le64(x) ((__force __le64)(u64)(bswap_64(x)))
#define le64_to_cpu(x) ((__force u64)(__le64)(bswap_64(x)))
#define cpu_to_le32(x) ((__force __le32)(u32)(bswap_32(x)))
#define le32_to_cpu(x) ((__force u32)(__le32)(bswap_32(x)))
#define cpu_to_le16(x) ((__force __le16)(u16)(bswap_16(x)))
#define le16_to_cpu(x) ((__force u16)(__le16)(bswap_16(x)))
#else
#define cpu_to_le64(x) ((__force __le64)(u64)(x))
#define le64_to_cpu(x) ((__force u64)(__le64)(x))
#define cpu_to_le32(x) ((__force __le32)(u32)(x))
#define le32_to_cpu(x) ((__force u32)(__le32)(x))
#define cpu_to_le16(x) ((__force __le16)(u16)(x))
#define le16_to_cpu(x) ((__force u16)(__le16)(x))
2007-03-12 21:22:34 +01:00
#endif
struct __una_u16 { __le16 x; } __attribute__((__packed__));
struct __una_u32 { __le32 x; } __attribute__((__packed__));
struct __una_u64 { __le64 x; } __attribute__((__packed__));
#define get_unaligned_le16(p) le16_to_cpu(((const struct __una_u16 *)(p))->x)
#define get_unaligned_16(p) (((const struct __una_u16 *)(p))->x)
#define put_unaligned_le16(val,p) (((struct __una_u16 *)(p))->x = cpu_to_le16(val))
#define put_unaligned_16(val,p) (((struct __una_u16 *)(p))->x = (val))
#define get_unaligned_le32(p) le32_to_cpu(((const struct __una_u32 *)(p))->x)
#define get_unaligned_32(p) (((const struct __una_u32 *)(p))->x)
#define put_unaligned_le32(val,p) (((struct __una_u32 *)(p))->x = cpu_to_le32(val))
#define put_unaligned_32(val,p) (((struct __una_u32 *)(p))->x = (val))
#define get_unaligned_le64(p) le64_to_cpu(((const struct __una_u64 *)(p))->x)
#define get_unaligned_64(p) (((const struct __una_u64 *)(p))->x)
#define put_unaligned_le64(val,p) (((struct __una_u64 *)(p))->x = cpu_to_le64(val))
#define put_unaligned_64(val,p) (((struct __una_u64 *)(p))->x = (val))
#ifndef true
#define true 1
#define false 0
#endif
#ifndef noinline
#define noinline
#endif
/*
* Note: simplified versions of READ_ONCE and WRITE_ONCE for source
* compatibility only, not usable for lock-less implementation like in kernel.
*
* Changed:
* - __unqual_scalar_typeof: volatile cast to typeof()
* - compiletime_assert_rwonce_type: no word size compatibility checks
* - no const volatile cast
*/
#define READ_ONCE(x) (x)
#define WRITE_ONCE(x, val) \
do { \
(x) = (val); \
} while (0)
#define smp_rmb() do {} while (0)
#define smp_mb__before_atomic() do {} while (0)
#define smp_mb() do {} while (0)
struct percpu_counter {
int count;
};
typedef struct refcount_struct {
int refs;
} refcount_t;
static inline void refcount_set(refcount_t *ref, int val)
{
ref->refs = val;
}
static inline void refcount_inc(refcount_t *ref)
{
ref->refs++;
}
static inline void refcount_dec(refcount_t *ref)
{
ref->refs--;
}
static inline bool refcount_dec_and_test(refcount_t *ref)
{
ref->refs--;
return ref->refs == 0;
}
static inline int refcount_read(const refcount_t *ref)
{
return ref->refs;
}
typedef u32 blk_status_t;
typedef u32 blk_opf_t;
typedef int atomic_t;
struct work_struct;
typedef void (*work_func_t)(struct work_struct *work);
struct workqueue_struct {
};
struct work_struct {
work_func_t func;
};
#define INIT_WORK(_w, _f) do { (_w)->func = (_f); } while (0)
typedef struct wait_queue_head {
} wait_queue_head_t;
struct wait_queue_entry {
};
#define DEFINE_WAIT(name) struct wait_queue_entry name = {}
struct super_block {
char *s_id;
};
struct va_format {
const char *fmt;
va_list *va;
};
struct lock_class_key {
};
#define __init
#define __cold
#define __user
#define __pure
#define __printf(a, b) __attribute__((__format__(printf, a, b)))
static inline bool sb_rdonly(struct super_block *sb)
{
return false;
}
#define unlikely(cond) (cond)
#define rcu_dereference(c) (c)
#define rcu_assign_pointer(p, v) do { (p) = (v); } while (0)
static inline void atomic_set(atomic_t *a, int val)
{
*a = val;
}
static inline int atomic_read(const atomic_t *a)
{
return *a;
}
static inline void atomic_inc(atomic_t *a)
{
(*a)++;
}
static inline void atomic_dec(atomic_t *a)
{
(*a)--;
}
static inline bool atomic_inc_not_zero(atomic_t *a)
{
if (*a) {
atomic_inc(a);
return true;
}
return false;
}
static inline struct workqueue_struct *alloc_workqueue(const char *name,
unsigned long flags,
int max_active, ...)
{
return (struct workqueue_struct *)5;
}
static inline void destroy_workqueue(struct workqueue_struct *wq)
{
}
static inline void flush_workqueue(struct workqueue_struct *wq)
{
}
static inline void workqueue_set_max_active(struct workqueue_struct *wq,
int max_active)
{
}
static inline void queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
}
static inline bool wq_has_sleeper(struct wait_queue_head *wq)
{
return false;
}
static inline bool waitqueue_active(struct wait_queue_head *wq)
{
return false;
}
static inline void wake_up(struct wait_queue_head *wq)
{
}
static inline void lockdep_set_class(spinlock_t *lock, struct lock_class_key *lclass)
{
}
static inline void lockdep_assert_held_read(struct rw_semaphore *sem)
{
}
#define lockdep_assert_held(sem)
static inline bool cond_resched_lock(spinlock_t *lock)
{
return false;
}
static inline void init_waitqueue_head(wait_queue_head_t *wqh)
{
}
static inline bool need_resched(void)
{
return false;
}
static inline bool gfpflags_allow_blocking(gfp_t mask)
{
return true;
}
static inline void prepare_to_wait(wait_queue_head_t *wqh,
struct wait_queue_entry *entry,
unsigned long flags)
{
}
static inline void finish_wait(wait_queue_head_t *wqh,
struct wait_queue_entry *entry)
{
}
static inline void schedule(void)
{
}
static inline void rcu_read_lock(void)
{
}
static inline void rcu_read_unlock(void)
{
}
static inline void synchronize_rcu(void)
{
}
/*
* Temporary definitions while syncing.
*/
struct btrfs_inode;
struct extent_state;
struct extent_buffer;
struct btrfs_root;
struct btrfs_trans_handle;
static inline void btrfs_merge_delalloc_extent(struct btrfs_inode *inode,
struct extent_state *state,
struct extent_state *other)
{
}
static inline void btrfs_set_delalloc_extent(struct btrfs_inode *inode,
struct extent_state *state,
u32 bits)
{
}
static inline void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
struct extent_state *orig,
u64 split)
{
}
static inline void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
struct extent_state *state,
u32 bits)
{
}
static inline int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *cow)
{
return 0;
}
static inline void btrfs_qgroup_trace_subtree_after_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf)
{
}
#endif